
Automatic Enforcement of Data Use Policies with

DataLawyer

Prasang Upadhyaya

Department of Computer

Science and Engineering

University of Washington

prasang@cs.uw.edu

Magdalena Balazinska

Department of Computer

Science and Engineering

University of Washington

magda@cs.uw.edu

Dan Suciu

Department of Computer

Science and Engineering

University of Washington

suciu@cs.uw.edu

ABSTRACT
Data has value and is increasingly being exchanged for com-
mercial and research purposes. Data, however, is typically
accompanied by terms of use, which limit how it can be used.
To date, there are only a few, ad-hoc methods to enforce
these terms. We propose DataLawyer, a new system to for-
mally specify usage policies and check them automatically at
query runtime in a relational database management system
(DBMS). We develop a new model to specify policies com-
pactly and precisely. We introduce novel algorithms to ef-
ficiently evaluate policies that can cut policy-checking over-
heads to only a few percent of the total query runtime. We
implement DataLawyer and evaluate it on a real database
from the health-care domain.

1. INTRODUCTION
Data has value; it is increasingly bought and sold on the

Web and exchanged between organizations and individuals.
Schomm et al. [44] list 46 commercial data suppliers; 34 of
whom provide data in a relational or semi-structured form1.
Even companies whose business model has traditionally been
based on selling information, such as Dun & Bradstreet or
Reuters2, are starting to o↵er some of their valuable data on
the Web, albeit under major restrictions. Some of the most
successful companies today are those that hold, can produce,
or acquire unique and valuable data, such as geographical
data (Google maps), social data (Facebook), corporate data
(Dun&Bradstreed), maps (Navteq), or miscellaneous data
extracted, integrated, and cleaned (Factual).

Whether sold online or o✏ine, data typically comes with
terms of use, which limit how the buyer can use the data.
These are usually written by lawyers, span multiple pages,
are di�cult to read and are sometimes ambiguous. We per-
formed an informal survey of 13 data providers3 and found

1
The other data type are free style reports.

2
Reuters, world’s oldest information company, was founded in 1851.

3
Foursquare [8], Yelp [20], Azure Marketplace [17], Twitter [14], In-

fochimps [9], Socrata [15], Xignite [19], Digital Folio [6], DataSift [5],

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

that terms of use accompanied all of the datasets or the APIs
to acquire those datasets. Table 1 lists some examples of the
terms we found. These terms restrict, in various ways, how
the data can be used: for example P1 says that Navteq pro-
hibits users from joining their map data with other datasets:
if the user wants to join, she needs to purchase the data at
a higher price; P2 limits which users can access a given data
item depending on the context; P3 limits the amount of data
that can be retrieved in a time window, etc. These are much
simplified descriptions. In our survey, the average length of
the terms of use document was 4489 words or about 8.3
pages; all were written in natural language, most often us-
ing legal terms, were often di�cult to read, understand, and
remember, and were sometimes ambiguous.

While individual end-users happily ignore terms of use
(commonly clicking the I-agree box without even opening
the accompanying document), when a major firm acquires a
valuable database, it cannot ignore its terms of use; they risk
significant losses if their employees fail to adhere to the terms
of use. This means that the company is responsible for, and
interested in monitoring how its employees access, view, use,
and manipulate data from its valuable databases. This often
applies also to data produced internally by a company. For
example, all large Internet companies put significant value
on their user data (and their user privacy) and restrict both
the employees who can access the data and what they can do
with that data: e.g., end-users may have agreed that their
data be used to improve a certain product but for no other
purpose. The company must respect this restriction.

To date, firms have few ways to enforce terms of use and
typically rely on access restrictions and extensive employee
training.

In this paper, we propose to specify the usage policies
formally, and check them automatically at query time. We
start by introducing a formal language, based on SQL, for
specifying usage policies, which is rich enough to express all
policies encountered in our survey (such as those in Table 1).
Then, we present the DataLawyer system for enforcing data
use policies automatically, inside a relational database man-
agement system (DBMS). DataLawyer is as a middleware
layer on top of a relational DBMS that allows users to run
normal SQL queries, but before letting a query execute, it
checks all policies. If any policy is violated, the query is
rejected and the user is informed about the violation; oth-
erwise, the query is evaluated in normal fashion.

The major challenge in any policy enforcement system is
performance. Without the system, users would issue regular

World Bank [18], Navteq [12], data.gov.uk [13], and DataMarket [4].

Examples of terms of use Restriction type

P1 Overlaying Navteq data with any other data is prohibited (Navteq [12]) Prohibit joins
P2 Each book may be lent once for 2 weeks while being inaccessible by the lender (Amazon Kindle [1]) Group licenses
P3 All queries, totaled over a month, may return up to 2M chars at the free tier (MS Translator [10]) Generating free samples
P4 OAuth calls are permitted 350 requests per hour (from Twitter [14] and a similar policy at Foursquare [8]) Rate limiting
P5 Queries that try to identify an individual referenced in the database are prohibited (MIMIC II [11]) Limit information disclosure
P6 You are required to display all attribution information and any proprietary notices associated with the

Foursquare Data (Foursquare [8] and similar policies in Yelp [20] and World Bank [18])
Attribution and provenance

P7 Don’t aggregate or blend our star ratings and review counts with other providers. You may show content
from multiple providers, but Yelp data should stand on its own (Yelp [20])

Disallow aggregations but al-
low joins and unions

Table 1: Example policies from commercial data sellers and their informal classification.

SQL queries. In the case of long-running analytical queries,
the overhead of policy checking is easily amortized. In all
other cases, however, policy checking can significantly slow
down performance (Figure 1 in §5, for example, shows how a
baseline non-optimized policy checking approach can impose
a high and growing overhead).

Automatic policy enforcement is expensive because the
system needs to record a significant amount of information
about each query in a usage log : e.g., the user identifier and
query time, the query text, the query result, the provenance
expression. In addition, it needs to execute every policy
against the data and the usage log in order to check com-
pliance. Done näıvely, this can become multiple orders of
magnitude slower than running the SQL query alone. High
overhead presents a major barrier for adoption: a company
would not adopt a policy enforcement system, if it signifi-
cantly slows down its daily operations.

To address the performance challenge, we propose novel
algorithms to e�ciently evaluate policies. These algorithms
are based on query-rewriting techniques that leverage the
separation of policies into data (the usage log component)
and query (the declaratively specified policies). We develop
two major optimizations.

The first optimization log compaction, addresses the prob-
lem of high and growing overhead of policy evaluation due
to a growing usage log. This optimization removes from
the log tuples that are no longer necessary for future pol-
icy checking. This optimization is based on the observation
that, while in principle one could write policies that check
the log arbitrarily far in the past, in practice policies tend
to look for specific event patterns that are restricted to a
limited subset of the log. For example, P1 in Table 1 checks
that Navteq data is not joined with other data sets. Since we
know this policy was enforced for all past queries, we only
need to keep the tail of the log generated by the current
query. P3 only requires the maintenance of the past month
of data related to the free tier of service. Notice that log
compaction is much harder than the tail-compaction used
in recovery logs, which simply deletes the tail of the log af-
ter the last checkpoint: in our case we need to reason about
the semantics of the policies. We show that, for each policy
specified in the system, one can compute an absolute wit-
ness, which is a subset of the log that is guaranteed to be
su�cient to evaluate that policy, both now and in the fu-
ture. The log compaction is obtained by replacing the log
with the union of all absolute witnesses for all policies.

The second optimization, interleaved evaluation, repre-
sents an advanced method to e�ciently evaluate expensive
policies. We start from the observation that, by far, the
most common case is when all policies are satisfied: this is
when users issue queries that comply with the policies, and
this is when they expect to see no significant slowdown over
using the system without policy enforcement. Our second

observation is that, when a policy is satisfied, it is usually be-
cause there is a fragment of the policy that already proves it
is satisfied. In interleaved evaluation, we evaluate simplified
versions of the original policies, and stop evaluation early,
when we have determined that there are no violations.

Contributions In summary, this paper makes the follow-
ing contributions:

1. In §3, we propose a novel model to specify policies
with the desiderata that any such model be su�ciently
flexible to express a variety of policies, while being
compact and precise. Our key idea is to first capture
a relevant subset of user and database actions taken
during query execution; and then to specify the policies
declaratively over those logs as states of the log that
are inconsistent with the intent of the policies. We
describe the semantics of our data model and show
how the common policies found in real world terms
of use can be concisely and precisely expressed in our
data model.

2. In §4, we present our optimized policy evaluation
methods including log compaction and interleaved
evaluation.

3. Lastly, in §5, we show experimental results from eval-
uating variants of policies defined in Table 1 on the
MIMIC II [11] database. Our results demonstrate the
practicality of our approach and the importance of our
optimizations. While it is possible with DataLawyer
to write policies that perform expensive checks, Data-
Lawyer’s optimizations enable the system to keep the
overhead constant and, in many cases, cut that over-
head to a few percent of the total query runtime, which
is from 10⇥ up to 330⇥ less than an unoptimized im-
plementation.

The source code [21] for DataLawyer’s implementation for
PostgreSQL is available publicly.

2. MOTIVATION
DataLawyer’s goal is to enable data sellers to specify pre-

cise data use policies and to help data buyers to use the data
without violating any of the policies.

DataLawyer should not be confused with an access con-
trol system [36]; such systems restrict users to a fixed set of
authorization privileges (or access modes), which are strictly
limited to reading or writing columns or rows. In contrast,
terms of use refer to complex scenarios, e.g., in Table 1, P1

specifies that the data may not be joined with any external
datasets, P4 limits the rate of queries, P7 disallows aggrega-
tion; none of these are captured by access control systems.

DataLawyer is also not intended to protect against a ma-
licious user; with some patience and e↵ort a malicious user
can extract the entire data without breaching any policy,

then store it on her own device and use at will. The sys-
tem is designed to help honest users comply with terms of
use that are di�cult to read, understand, and remember. It
is also meant to help large corporations monitor how their
valuable data is used internally by their employees.

Finally, we note another potential application of Data-
Lawyer: usage-based data pricing. Wang et al. [46] postu-
late that the value of data is both intrinsic (e.g., based on its
completeness and accuracy) and extrinsic (i.e., it depends
on the context in which it is used). Data owners frequently
control the extrinsic value of data by limiting the kind of
operations allowed on it. For example, Factual [7], an on-
line data vendor, prices its data based both on volume and
on what the buyer uses the data for: data used in ads is
priced di↵erently from data used in applications and prices
can also vary between applications. DataLawyer can be used
to compute the price of the data dynamically, e.g., based on
how the data was used during the last billing period.

3. POLICIES
In this section, we present the policy specification formal-

ism, the usage log, and their semantics.

3.1 Policy Specification
For each term of use, the data owner defines a policy ⇡,

which is a SQL query of the following form:

SELECT DISTINCT [error-message] FROM ...
WHERE ... GROUP BY ... HAVING ...

The FROM clause contains base tables, or select-from-
where-groupby-having subqueries. The WHERE and HAVING
clauses are conjunctions of atomic predicates without sub-
queries.

The SQL query may refer both to the database and to a
usage log that we describe in §3.2. If the policy ⇡ returns
the empty set, denoted ⇡ = ;, then the policy is satisfied.
Otherwise, we say that ⇡ returns true, denoted ⇡ 6= ;; in that
case a violation has been detected and the error-message
specified in the policy is returned to the user.

We illustrate our policy language with two examples.

Example 3.1. P5b is a concrete variant of P5 in Table 1:

P5b: Stop queries where fewer than 10 patients
contribute to any output tuple.

This policy is from the MIMIC II (Multiparameter Intelli-
gent Monitoring in Intensive Care) [11] database that con-
tains readings from patient monitoring systems and clinical
data collected at an ICU over seven years. In our system,
the policy is specified as follows:

SELECT DISTINCT ‘P5b violated: Fewer than 10
patients contribute to an answer’ AS errorMessage

FROM Provenance p
WHERE p.irid = ‘patients’
GROUP BY p.ts, p.otid
HAVING COUNT(distinct p.itid) < 10

The table Provenance(ts, otid, irid, itid) in the
FROM clause is part of the usage log (described in detail be-
low). A record in Provenance represents the fact that input
tuple itid from input relation irid belongs to the prove-
nance of the output tuple otid of the query executed at time
ts. To simplify the presentation, we assume that timestamps
are taken from an integer clock with su�cient granularity

that each query has a unique ts attribute.4 In the examples,
we further assume that timestamps are expressed in seconds.
Thus, the policy simply checks if there exists some query that
has an output tuple whose provenance has fewer than 10 dis-
tinct input tuples from the patients table, which is one of
the tables in the MIMIC II database5. If the answer is non-
empty, then the policy has been violated. The policy appears
to check all queries, but our system only evaluates it on the
last query, namely the query currently requested by the user
(because all previous queries have already been checked and
are known to satisfy all policies); we explain this and other
optimizations in §4.

Example 3.2. We now illustrate a more complex policy,
involving temporal restrictions:

P2b: At most 10 distinct users from the group
‘Students’ are allowed to query patients in any
window of 14 days.

This policy generalizes P2 in Table 1, and is adapted to the
same MIMIC database, for illustration purposes. The policy
is expressed as follows in our language:

SELECT DISTINCT ‘P2b violated: More than 10 users
executed queries in 14 days.’ AS errorMessage

FROM Users u, Schema s, Groups g, Clock c
WHERE u.ts = s.ts and s.irid = ‘patients’

and u.uid = g.uid AND g.gid = ‘Students’
and u.ts > c.ts - 1209600

HAVING COUNT(distinct u.uid) > 10

Notice that the query has no GROUP BY clause: it checks
if the total number of distinct user id’s that referred to pa-
tients over the last 14 days is greater than 10. This policy
refers to two other tables in the log: Users, which records
the user id of the user issuing the query, and Schema, which
records the schema information for each query; both are de-
scribed below. The Clock relation has a single row and a
single column updated by the system6

3.2 Usage Log
We now describe the usage log, denoted L, that captures

all features of queries executed on the database that are nec-
essary to enforce a set of data use policies. The log consists
of m relations, L = (R1, . . . , Rm

), where each relation R
i

captures features of a particular type. Any feature can be
stored in the log; the only requirement is that each rela-
tion has a timestamp attribute, R

i

(ts,...). In addition,
the system defines m log-generating functions (referred to
as functions for brevity), f = (f1, . . . , fm). When a query
q is executed on the database instance D, if it satisfies all
policies then, for each relation R

i

, the system uses the func-
tion f

i

to compute the set of features S
i

= f
i

(q,D) to be
appended to R

i

: it then updates R
i

= R
i

[({t}⇥S
i

), where
t is the current timestamp.

In addition to the usage log, the system also exposes the
Clock relation that has a single row with a single attribute
corresponding to the current time (see Example 3.2).

Example 3.3. The usage log in our DataLawyer system
prototype consists of the following three relations:
4
We could relax this assumption by adding a separate, unique query

id attribute but that complicates examples.
5
Its schema is patients(pid, dob, sex).

6
Alternatively, we could have used a function like CUR-

RENT_TIMESTAMP(), with the same semantics as c.ts.

Schema(ts, ocid, irid, icid, agg)
Users(ts, uid)
Provenance(ts, otid, irid, itid)

Schema records the schema information of each query:
a record (ts, ocid, irid, icid, agg) represents the fact
that the answer to the query executed at time ts contains
a column ocid, which stores a value derived from the in-
put column icid from the input relation irid; agg indi-
cates whether an aggregate was used. For example, the
query, SELECT T.A AS K, (T.B + T.C) AS L FROM T, gen-
erates three rows in Schema:

(ts, K, T, A, false)
(ts, L, T, B, false)
(ts, L, T, C, false)

The log-generating function fSchema(q,D) takes as input a
SQL query q and computes all tuples that need to be inserted
in Schema on behalf of q, by performing static analysis on q;
this function does not need the database instance D.

The Provenance relation contains complete provenance
information. We use the set of contributing tuples prove-
nance, also called lineage [45], where, for each output tuple
otid we record all contributing input tuples irid, itid. The
function fProvenance(q,D) computes the provenance of q on D
by running a SELECT * ... query derived from q, similarly
to Perm [38]. Finally, Users stores, for each query, the id
of the user who executed that query.

In the rest of the paper, we assume that the schema of
the usage log is that given in Example 3.3. We emphasize,
however, that all our optimization techniques apply to an
arbitrary schema: to add a new relation R

i

to the log, the
systems administrator only has to write the corresponding
log-generating function f

i

(q,D).

3.3 Semantics
We can now define the semantics of our policy manager.

We denote by L
t

the log up to timestamp t, and denote
⇧ = {⇡1, . . . ,⇡p

} the set of policies defined in the system.
Informally, when a user asks a query q over the database D
at time t, the system first appends {t} ⇥ f

i

(q,D) to each
log relation R

i

, to produce a tentative log L0
t

. Then, it
checks all policies on the new log; if all return ;, in notation
⇧(t,L0

t

, D) = ;, then the query is executed and the answer
is returned to the user; otherwise the query is rejected and
the log is reverted to L

t�1. Formally:

L0 = ;
L0

t

= L
t�1 [({t}⇥ f(q,D))

L
t

=

(
L0

t

if ⇧(t,L0
t

, D)) = ;
L

t�1 otherwise
(1)

Here f(q,D) denotes all functions f1, . . . , fm. Each policy
⇡(t,L

t

, D) may refer to the log, the database, and also the
timestamp t, obtained from Clock (see Example 3.2).

4. THE DATALAWYER SYSTEM
When the user issues a new query, a näıve way to check

the policies is to apply directly the semantics of Eq.(1): gen-
erate the increment of the log L, write it to disk, then iter-
ate over the policies and evaluate them. If any violation is
found, revert the log. We do not consider this näıve strategy.
Instead, our NoOpt Algorithm 1 incorporates the following
straightforward optimizations:

1. Generate only those logs R
i

mentioned in the policy
definitions. For example, if no policy uses Provenance,
then do not generate that log at all.

2. Store the generated increments to the logs f(q,D)
in temporary tables in memory and keep them there
while checking the policies. Write them to disk only
when all policies are satisfied. Without this optimiza-
tion, in the case of failure, the log increments have to
be deleted from disk.

Even with these two optimizations, checking policies with
the NoOpt algorithm is impractical because (as we show) it
can be 1-2 orders of magnitude slower than the query that
the user wants to run. Additionally, with NoOpt, policy
checking times increase as more queries execute against the
database. In this section, we first present optimizations
that (1) reduce the size of the log to keep policy-checking
times constant (and low), and (2) use an optimized evalua-
tion strategy for the set of policies to reduce policy-checking
times compared to NoOpt. We then put these optimizations
together and show how to apply them for a set of policies
defined on a dataset.

Algorithm 1: The NoOpt Algorithm
Input : Timestamp t, query q, database D.
Output: Update the log or abort.

begin
BEGIN TRANSACTION
L L [({t}⇥ f(q,D))

1 ⇡
union

 ⇡1 [· · · [⇡
k

2 if ⇡
union

(t,L, D) = ; then COMMIT;
3 else ABORT;

4.1 Data Minimization
In theory, the log can grow forever, and the policies may

inspect the entire log, from the beginning of time. In prac-
tice this never happens. We describe optimization tech-
niques that exploit the fact that policies look only for re-
stricted events back in time.

4.1.1 Time-Independent Policies

We start with a very simple optimization, which identifies
when a policy depends only on the current query, and not on
the log history. For example, policy P1 in Table 1 prohibits
joins of a dataset with other datasets: it only depends on
the current query q and not the log history. In other words,
we do not need to examine the entire log and check what
previous queries have done.

We call a policy time-independent if it can be checked
by examining only the increment of the log instead of the
entire log: formally, denoting L

past

= L
t�1 and L

present

=
L

t

� L
t�1, then ⇡(L

t

, D) = ⇡(L
past

, D) [⇡(L
present

, D).
We give here a syntactic criterion for time-independence.
One subtlety is that a time-independent policy is usually
not written in a way in which it refers only to the current
time, but checks a property for all timestamps: we need to
use the fact that the policy was true in the past to infer
that it su�ces to check only the current time. Formally, a
SQL policy ⇡ is time-independent if it, and all its subqueries
in the FROM clause, satisfy the following conditions: (a) all
timestamp attributes from all relations are joined, and (b)
if ⇡ contains any aggregates then the group-by attributes
include the timestamp. If ⇡ is time-independent, we rewrite
it to a policy denoted by ⇡

ind

by adding a selection requiring
that the timestamps, ts, refer to the current clock, c.ts.

Example 4.1. Policy P1 and its optimization are:

P1: SELECT DISTINCT ’No external joins allowed’
FROM Schema p1, Schema p2
WHERE p1.ts=p2.ts and p1.irid=’Navteq’ and p2.irid != ’Navteq’

P1_IND: SELECT DISTINCT ’No external joins allowed’
FROM Schema p1, Schema p2, Clock c
WHERE p1.ts = c.ts and p2.ts = c.ts and p1.ts = p2.ts
and p1.irid = ’Navteq’ and p2.irid != ’Navteq’

Thus, we restrict the policy to check only the current
timestamp. This is correct only because we know that the
policy was satisfied in the past. In addition to restricting
policy evaluation to the log increment, we can further opti-
mize the system by not creating the log at all: this is handled
by the log-compaction optimization, discussed next.

4.1.2 Log Compaction

The log compaction optimization removes from the log
entries that are guaranteed to be unnecessary now, and at
any time in the future7. Notice that this is far more complex
that the tail compression in recovery logs, which deletes the
entire log preceding the last successful checkpoint. In our
case, the compression must take into account the semantics
of the policies and reason about which tuples will never be
used in the future.

Example 4.2. Consider policy P2b from Example 3.2: no
more than 10 distinct users from group ‘Student’ may ex-
ecute a query on patients in any window of 14 days. As-
sume for a moment that this is the only policy in our system.
Then, it is obvious that we can (a) store in the log only en-
tries belonging to users in the group ’Student’ and referring
to table patients, and (b) remove all entries older than 14
days. By repeating this kind of reasoning to all policies we
can compute a subset of the log that is su�cient to check all
policies in the future.

We give now the formal definition. Fan [35] defines a
witness for a query Q to be a subset of the database s.t.
Q returns the same answer on the witness as on the en-
tire database. Adapting to our setting, let ⇡ be any query
(Boolean or not), and L

t

, D be the current log and the cur-
rent database. A witness for ⇡ is a subset Lw

t

✓ L
t

such that
⇡(t,L

t

, D) = ⇡(t,Lw

t

, D). We call the tuples T = L
t

� Lw

t

dispensable tuples (for the given witness). We could remove
the dispensable tuples from the log without a↵ecting the
policy at the current time. They may, however, become
necessary in the future. If t t0 then we write L

t

 L
t

0 to
denote the fact that L

t

0 is an extension of the log from time
t to time t0.

Definition 4.1. Let ⇡ be a query (Boolean or not). A
set of tuples T ✓ L

t

is called absolutely dispensable for ⇡, if
for any future evolution of the log L

t

0 � L
t

, ⇡(t0,L
t

0 , D) =
⇡(t0,L

t

0 �T,D). We call Lw

t

= L
t

�T an absolute witness.

The Log Compaction Algorithm 2 examines each policy
⇡ in turn, and computes a witness Rw

i,⇡

required by that
policy, for each log relation R

i

. Then, it takes the union
of all witnesses required by all policies, as well as by their
subqueries occurring in the FROM clause. The heart of
the algorithm consist of computing Rw

i,⇡

, the witness for

7
If a new policy is added at time t, DataLawyer restricts its history to

start at time t by adding extra predicates on the timestamp attributes.

Algorithm 2: Log Compaction Algorithm: compact
Input : A set of policies ⇧
Output: Witness tuples for each log relations R

i

2 L
t

begin
1 foreach R

i

do Rw

i

 ;

2 foreach ⇡ 2 ⇧ do
foreach subquery Q

i

in ⇡’s FROM-clause do
3 (Rw

1 , . . . ,Rw

m

) (Rw

1 , . . . ,Rw

m

) [compact({Q
i

})

foreach log relation R
i

in ⇡’s FROM-clause do
4 Rw

i

 Rw

i

[Rw

i,⇡

// See text.

return (Rw

1 , . . . ,Rw

m

)

R
i

required by the policy (or subquery) ⇡. Computing a
minimal witness is NP-hard in general [2], so we settle for
heuristics, based on the structure of the policy ⇡. If the
policy has subqueries in the FROM clause, when we handle
them separately. For example, to compute the witness for
SELECT ...FROM Subquery, R1, R2 WHERE ...HAVING ...
we compute separately the witness for Subquery and for
the modified query ⇡ = SELECT * FROM R1, R2 WERE ...,
then union the witnesses. In the remainder of this section
we assume that ⇡ is a policy without subqueries, and show
how to compute a witness Rw

i,⇡

.
Note that setting Rw

i,⇡

= R
i

always gives us a correct wit-
ness, which is equivalent to not doing any log compaction.
In the remainder of this section we describe how to compute
a smaller witness for certain policies ⇡, starting with simple
ones and successively generalizing to more complex ones.

No Clock, Full Query. Consider a query ⇡ that does not
refer to the clock (current time), and also has no projections:

⇡ = SELECT * FROM R1, . . . , Rm, D1, . . . , Dq WHERE . . .

Here, R
i

, i = 1,m are part of the usage log, and D
j

, j = 1, q
are part of the database, e.g. Groups in Example 3.2. Note
that, while all policies in our system are Boolean queries,
Def. 4.1 also applies to full queries and we start here by
describing how to derive the witness Rw

i,⇡

for a full query ⇡.
Let R

i

’s neighborhood N(R
i

) = {R
i1 , . . . , Riv} be the set of

all other log relations that equijoin on the timestamp with
R
i

, directly or indirectly. Note that this set may be empty.

Lemma 4.1. The following queries define a witness for
the policy ⇡ and relations R

i

:

R
w

i,⇡

= SELECT DISTINCT R
i

.* (2)

FROM R
i

, R
i1 , . . . , Riv , D1, ..., Dq WHERE . . .

The FROM clause contains R
i

, its neighborhood, and the
database relations, and the WHERE clause contains all condi-
tions in ⇡ that refer only to the relations in the FROM clause.
If the same relation name R

i

occurs multiple times in ⇡ (self-
joins), then the witness Rw

i,⇡

is obtained as the union of the
queries (2), one for each occurrence of R

i

in the FROM clause
(see Example 4.4 below).

(Proof sketch) We outline the proof that Rw
i,⇡

, in Eq. 2, cor-
rectly computes an absolute witness of relation R

i

for policy
⇡. We consider the possible cases. First, the case when R

i

’s
neighborhood is empty: then the query simply selects those
tuples in R

i

that satisfy all predicates on R
i

in the policy:
obviously, all tuples that do not satisfy these predicates are
dispensable for evaluating the policy, both now and in the
future. Second, if the neighborhood is non-empty, then R

i

is semi-joined with the other R
i

j

’s (this is a semi-join re-
duction [25]): all other tuples are dispensable now, and are
also dispensable in the future because all the R

i

j

’s are joined
on the timestamp, and no new tuples are being added at a
current, or past timestamp.

No Clock, Boolean queries. We now generalize the algo-
rithm to Boolean queries ⇡, still without reference to the
Clock. If ⇡ has a HAVING clause, then we drop the GROUP-BY
and HAVING clauses, replace SELECT with SELECT * to treat
the policy as a full query, and compute an absolute witness
for the full query using Eq.(2); in other words, we do not
take advantage of the fact that ⇡ is Boolean. Otherwise:
⇡ = SELECT DISTINCT ‘Error’ FROM R1, . . . , Rm, D1, . . . , Dq WHERE . . .

In this case we can compute a smaller witness than that for
the full query. Let N(R

i

) = {R
i1 , . . .}, be the neighborhood

of R
i

, and denote X the set of all attributes of R
i

occurring
in a join predicate.

Lemma 4.2. The following query (obtained by modifying
Eq.(2)) computes an absolute witness to ⇡:

R
w

i,⇡

= SELECT DISTINCT ON (R
i

.X), R
i

.* (3)

FROM R
i

, R
i1 , . . . , Riv , D1, ..., Dq WHERE . . .

(Proof sketch) Recall that the DISTINCT ON statement
in SQL nondeterministically chooses a single witness from
an entire group of tuples. For example, SELECT DISTINCT
ON (R.A), R.B FROM R chooses nondeterministically a value
R.B for each distinct value R.A. In other words, the witness
is computed by nondeterministically choosing any tuple that
contributes to the output. Notice that the absolute witness
is not unique: for each distinct value of X, the algorithm can
choose any tuple with those values of the attributes X.

Adding the Clock. Finally, we consider queries (Boolean
or not) referring to Clock; recall that this is done through
an expression Clock c in the FROM clause. We assume all
predicates on the clock are of the form c.ts op expression,
where op is one of <,, >,�,=, in other words op cannot be
6=; we apply a set of simple transformation rules to rewrite
expressions like u.ts > c.ts � 5 into c.ts < u.ts + 5.
We don’t perform log compaction on policies that have an
inequality operator, 6=, on the clock. Furthermore, we re-
place every equality predicate c.ts = expr with c.ts
expr and c.ts � expr.

Lemma 4.3. Let ⇡ be a policy where all predicates on the
clock are of the form c.ts op expr where op 2 {<,, >,�
}. Then, an absolute witness can be computed by the query
(Eq. 2) or (Eq. 3) (depending on whether ⇡ is Boolean or
not), with the following modifications: (a) Drop predicates
of the form c.ts > expression, (b) Replace every predicates
of the form c.ts < expression (or), with currenttime+
1 < expression (or), where currenttime is a constant
that represents the current value of the clock.

Notice that a time-independent policy ⇡
ind

(Section 4.1.1)
will return an empty witness, in other words it does not
contribute anything to the log. Indeed, such a policy con-
tains the predicate c.ts = R

i

.ts, which is rewritten to
currenttime + 1 R

i

.ts, which evaluates to false because
all new tuples in R

i

have the current time-stamp.
(Proof sketch) Without dropping or modifying the pred-

icates referring to the clock, the expressions (Eq. 2) or

(Eq. 3) will compute a witness, but not necessarily an ab-
solute witness; we note that, for (Eq. 3), all attributes oc-
curring in expression of c.ts < expression are included
in the DISTINCT ON attributes R

i

.X (they are considered as
occurring in a join). By dropping the predicate c.ts >
expression we increase the set of witnesses, and ensure that
we also include all witnesses in the future, when c.ts will
be larger. Similarly, by modifying c.ts < expression to
currenttime+ 1 < expression we drop all tuples that will
be dispensable starting with the next time stamp.

We illustrate log compaction with two examples.

Example 4.3. Continuing Example 4.2, we show how
DataLawyer computes the absolute witness for the query
P2b in Example 3.2. First, transform the policy into a full
query. Since the join is on the timestamp, the neighborhood
of Users and of Schema includes the other: N(Users) =
{Schema} and N(Schema) = {Users}. Moreover, we update
the predicate on time. Therefore, our system computes the
absolute witness for Users as:

SELECT DISTINCT u.*
FROM Users u, Schema s, Groups g
WHERE u.ts = s.ts and s.irid = ‘patients’ and u.uid = g.uid

and g.gid = ‘Student’ and u.ts > currentTime + 1 - 1209600

In other words, we only record users from ’Student’ and
only if they have issued a query on Patients in the last 14
days, less one time unit. Note that other policies compute
their own absolute witnesses for Users: the system takes
their union. Similarly for Schema:

SELECT DISTINCT s.*
FROM Users u, Schema s, Groups g
WHERE u.ts = s.ts and s.irid = ‘patients’ and u.uid = g.uid

and g.gid = ‘Student’ and u.ts > currentTime + 1 - 1209600

Example 4.4. We now illustrate how we do log com-
paction for P1_OPT in Example 4.1. Notice that this is a
DISTINCT query, and has a self-join, so the absolute witness
is obtained by taking the union of two queries:

Schema_w:
(SELECT DISTINCT ON (p1.ts), p1.*
FROM Schema p1, Schema p2
WHERE p1.ts = currentTime+1 and p2.ts = currentTime+1

and p1.ts = p2.ts and p1.irid = ’Navteq’ and p2 != ’Navteq’)
UNION
(SELECT DISTINCT ON (p2.ts), p2.*
FROM Schema p1, Schema p2
WHERE p1.ts = currentTime+1 and p2.ts = currentTime+1

and p1.ts = p2.ts and p1.irid = ’Navteq’ and p2 != ’Navteq’)

This query, however, returns the empty set, because all
occurrences in Schema have the timestamp strictly less than
currentTime. As a consequence, if this were the only policy,
then the system will not generate any log at all.

4.2 Policy Minimization
Next, we focus on the policies themselves, ⇧ =

{⇡1, . . . ,⇡k

} and describe optimized ways to compute them.

4.2.1 Interleaved Policy Evaluation

Recall that a policy i is satisfied when ⇡
i

returns false.
Hence, a query can proceed when all ⇡

i

return false. We
make two observations. First, by far the most common case
is when the policies evaluate to false. This is the normal use
of the database, when users ask queries that comply with
the policies: our main goal is to speed up this case. Second,
if a policy ⇡

i

returns false (the common case), it is often for

a simple reason, for example because some part of ⇡
i

is false,
e.g. one predicate or a join of only two relations; it su�ces
to find a partial expression of ⇡

i

that evaluates to false, then
we do not need to compute the entire policy. Based on this
intuition we develop the following optimization.

We review two standard definitions. (1) A policy query
⇡ is monotone if, for any two instances L ✓ L0 and D ✓
D0, we have ⇡(t,L, D) ✓ ⇡(t,L0, D0). All SPJU queries,
and Boolean queries with aggregate conditions of the form
having count([distinct] x) > k are monotone. In con-
trast, conditions of the form having count(...) < k are
non-monotone. (2) Given two policy queries ⇡,⇡0 we say
that ⇡ is contained in ⇡0 if, for all L, D, ⇡(t,L, D) ✓
⇡0(t,L, D). Since policies are Boolean queries, we denote
containment by ⇡) ⇡0, which means that if ⇡ is true then
⇡0 is necessarily true (but not the other way around).

Let S ✓ L be a subset of the log relations. The partial
policy for ⇡ and S, in notation ⇡S, is the policy obtained
from ⇡ by simply removing all references to relations in L�S
and also removing the having condition if it refers to any
relations in L�S. That is, the partial policy performs only
the joins on the relations in S and in the database D. Note
that the query is always syntactically correct. We prove the
following:

Lemma 4.4. Suppose ⇡ is a monotone policy without ag-
gregates. Then, for any partial policy, we have ⇡) ⇡S.
The same holds for a monotone policy with aggregates, if all
relations in L� S are joined on their keys.

Proof. (Sketch) First, if ⇡ is a Conjunctive Query with-
out aggregates, then, there exists a query homomorphism
from ⇡S ! ⇡, which maps every atom of ⇡S to the same
atom in ⇡; by the classic result on conjunctive query con-
tainment [32] we conclude that ⇡) ⇡S. For queries that
have an aggregate condition having count(...) > k we
note that the relations in L� S cannot raise the count, be-
cause they are joined on their keys.

Algorithm 3: Interleaved Policy Evaluation
input : A set of monotone policies ⇧ and a query q
output: true if a violation occurs, false otherwise

begin
S ;
for f

i

2 f do
// Update the log R

i

with its increment
// (including timestamp t)
R

i

 R
i

[({t}⇥ f
i

(q,D))
S S [R

i

for ⇡
k

2 ⇧ do
⇡0
 ⇡

k,S

if ⇡0(t,S, D) = ; then ⇧ ⇧� {⇡
k

}

// See §4.3, Improved Partial Policies
if ⇧ = ; then break;

return ⇧ 6= ;

Based on the lemma, Algorithm 3 describes an optimized
strategy for evaluating a set of monotone policies ⇧. We
add one by one the log relations R

i

to the set S. At each
step, we compute the log function f

i

to obtain all new tuples
added by the current query q to R

i

, then check for all policies
⇡
k

the conditions that refer just to the current log relations
in S: if any such policy returns false, we remove it from ⇧.
Next, we add a new log relation R

i

to S and iterate. We
stop when all log relations have been added to S. In §4.3,
we present an extension to interleaved that also allows us to

terminate when ⇧ becomes empty. If ⇧ = ;, then it means
that all policies have been found to be false (the common
case); otherwise, there was at least one violation.

An important decision is in which order to add the log
relations R

i

to S. Our current system uses a fixed order,
which is chosen experimentally, o✏ine, by optimizing over
an existing log. In our prototype implementation, the order
was experimentally found to be: Users followed by Schema
followed by Provenance.

Example 4.5. Consider policy P2b from Example 3.2,
and suppose we add the log relations in this order to S:
Users, Schema. Then we obtain two partial policies in addi-
tion to the full policy P2b:

P2d: SELECT DISTINCT 1
FROM Groups g, Clock c
WHERE g.gid = ‘Student’

P2c: SELECT DISTINCT 1
FROM Users u, Groups g, Clock c
WHERE u.uid = g.uid AND g.gid = ‘Student’

and u.ts > c.ts - 1209600
HAVING COUNT(distinct u.uid) > 10

P2b: SELECT DISTINCT 1
FROM Users u, Schema s, Groups g, Clock c
WHERE u.ts = s.ts and s.irid = ‘patients’

and u.uid = g.uid AND g.gid = ‘Student’
and u.ts > c.ts - 1209600

HAVING COUNT(distinct u.uid) > 10

The system starts optimistically by checking the first par-
tial policy, P2d; if there are no users in the Student group,
then the policy is guaranteed to be satisfied. Otherwise the
system proceeds with the second partial policy P2c, which
checks if at least 10 users from that group have asked any
queries in the last 14 days; if there are no such users then
the policy is satisfied. Only if there are such users does the
system proceeds with the full policy P2b.

4.2.2 Policy Unification

Finally, we describe a simple, but very e↵ective optimiza-
tion, which consolidates multiple policies with the same
structure but di↵erent constants into a single policy that
uses a separate table for the constants. Variants of this
technique have been employed in di↵erent settings in prior
research [37] and is an example of transforming queries into
data. We explain this technique through an example.

Example 4.6. Consider parameterized policies:

Px = SELECT DISTINCT ‘Error’ FROM Users u, Groups g
WHERE u.uid = g.uid AND g.gid = X
HAVING COUNT(distinct u.uid) > 10

Here X = {‘Student’, ‘Postdoc’, ...}. We unify
them in a single policy:

P1 = SELECT DISTINCT ‘Error’
FROM Users u, Groups g, Constants c
WHERE u.uid = g.uid AND g.gid = c.const
GROUP BY c.const
HAVING COUNT(distinct u.uid) > 10

The new table Constants contains all constants ‘Stu-
dent’, ‘Postdoc’, ... used in the policies.

4.3 Advanced Optimizations
We briefly outline two advanced optimizations that extend

the previous optimizations. Both apply to policies where all
log-generating functions join on the timestamp.

Preemptive Log Compaction. The optimization is to
compute the partial query LCQ’ for the log compaction query

LCQ using only the logs that have been generated. If LCQ’
is empty, LCQ would also be empty, so we might as well not
generate the remaining logs.

Improved Partial Policies. For interleaved execution
(§4.2.1), we only stop early, if a partial policy is satisfied
(i.e., produces the empty output). But we can do better. If
the partial policy produces a non-empty output, and that
output does not depend on the latest increment to the logs
(at the current time), then no tuple from the current times-
tamp would contribute to the output of the policy. But since
the policy was tested to be valid in the past, it will continue
to be valid in the current timestamp. We formally define
and evaluate this technique in our technical report [2].

4.4 Putting It All Together
DataLawyer puts all optimizations together as follows:

O✏ine Phase. Perform the following static analysis on
the policies:

1. Apply policy unification (§4.2.2). Denote ⇧ the result-
ing set of policies.

2. For each time-independent policy ⇡ 2 ⇧, replace it by
its optimized rewriting ⇡

ind

(§4.1.1). Let ⇧
mon

✓ ⇧
denote the set of monotone policies (§4.2.1).

Online Phase. For each query q, perform the following
actions, in order.

1. Run the Interleaved Policy Evaluation Algorithm 3 on
the monotone policies ⇧

mon

. If it returns true, abort
and make no changes to the usage logs. Else, let L

gen

denote the log relations computed by the Algorithm.
2. For each non-monotone policy ⇡ 2 ⇧\⇧

mon

, compute
the log relations R not yet in L

gen

and add them to
L

gen

, by applying the corresponding log function f .
Then, evaluate ⇡. If any policy returns true, abort.

3. Run log compaction (Algorithm 2) over ⇧. Recall
(§4.1.2) that only time-dependent policies contribute
anything to the log. As a further optimization, do Pre-
emptive Log Compaction (§4.3) to prune out policies
that do not require log compaction.

4. Flush log to disk. Execute q.

5. EVALUATION
We evaluate the overhead of policy checking with Data-

Lawyer compared to only executing queries in PostgreSQL
(§5.1). We also study the performance of DataLawyer’s opti-
mizations compared to the NoOpt strategy: Log compaction
(§5.2), time-independent policies (§5.3), interleaved policy
evaluation (§5.4), and policy unification (§5.5).
We run all experiments on the MIMIC-II dataset, which

is an anonymized dataset of readings from advanced Inten-
sive Care Unit patient monitoring systems for over 33000
patients, collected over a period of seven years. The subset
of data we experiment on is over 21GB in size. All experi-
ments are conducted on a single server running PostgreSQL
9.2 over OS X 10.9.4, equipped with a 2.7 GHz Intel Core
i7 processor and 16 GB DDR3 RAM.
The experimental setup consists of enforcing the policies

in Table 2, which are adapted to our dataset from the poli-
cies we introduced in Table 1. We experiment with two
users, with uid = 0 or uid = 1. The users repeatedly sub-
mit one of four distinct queries as shown in Table 3. The
query times range from 0.25ms to approximately 2s.

0"

20"

40"

60"

80"

100"

120"

1" 3" 5" 7" 9" 11"13"15"17"19"21"23"25"27"29"31"33"35"37"39"41"43"45"47"49"

Ti
m
e%
(in

%m
ill
is
ec
on

ds
)%

Batch%number%(each%consis5ng%of%120%queries)%

NoOpt,"uid=0"
NoOpt,"uid=1"
DataLawyer,"uid=0"
DataLawyer,"uid=1"

Figure 1: Policy and query evaluation time for Data-

Lawyer and NoOpt on policy P6 and query W1 (fastest).

DataLawyer’s overhead stabilizes while NoOpt’s grows

continuously and quickly exceeds DataLawyer’s over-

head. Queries are submitted in batches of 120. The

x-axis shows the batch number. The y-axis shows the

average query and policy evaluation time for each batch.

5.1 Overhead of DataLawyer with All Opti-
mizations Enabled

We first address the fundamental question of Data-
Lawyer’s overall practicality: What is the overhead of pol-
icy evaluation with DataLawyer compared with plain query
evaluation with PostgreSQL and compared with NoOpt?

To answer these questions, we execute (multiple times)
each query from Table 3 while enforcing one policy at the
time. This lets us measure the performance of DataLawyer
(with all optimizations turned on) and NoOpt, both with
increasingly expensive policies and with increasingly expen-
sive queries. We measure the query execution time, the over-
head of tracking usage, the overhead of evaluating policies,
and additionally, for DataLawyer, the overhead of compact-
ing the logs. Further, for each policy-query combination,
we run the experiment as user 0 (where DataLawyer can
quickly infer through interleaved policy evaluation that no
policy is applicable) and as user 1 (where the policies must
eventually be evaluated in full to determine compliance).

Figure 1 shows how policy checking overhead grows con-
tinuously for NoOpt, while it quickly stabilizes to an ap-
proximately constant overhead for DataLawyer. The fig-
ure shows what happens for query W1 and policy P6 but
the same trends occur for all policies and queries. In fact,
for user 0, query W4, and policy P4, the overhead is 14ms
for DataLawyer, while exceeding 2.7s for NoOpt after just
10 queries, leading to an almost 330⇥ reduction in over-
head. The cause for the growing overhead with NoOpt is
the increasing usage history. DataLawyer’s log compaction
optimization prunes the parts of the log that are no longer
needed, keeping the overhead constant after an initial ramp-
up period. Of course, this pruning initially adds overhead
compared with NoOpt.

We consider the overhead of policy evaluation in more
detail, focusing on W4 (long query) and W2 (short query).
For NoOpt, because the overhead grows, we measure the
overhead after the first and tenth query for W4 and the first
and 400th query for W2. For DataLawyer, we measure the
overhead once it stabilizes. Figure 2 shows the results.

As seen, for long queries (W4) and cheap policies (P1 and
P2), the overhead of policy checking is negligible for both
DataLawyer and NoOpt8. For short queries (W2), even for

8
For policies 1 and 2, it appears as if the later evaluations are faster

Policy

P1 A maximum of 10 distinct users can query the database from the group of users from university ‘X’ in any window of 200ms

P2 User with uid = 1 can not join poe_order with any other relation except poe_med

P3 User with uid = 1 can not execute any query on relation d_patients that returns more than 100 tuples

P4 No output tuple on a query over chartevents for uid = 1 should have less than or equal to 3 input tuples contributing to it

P5 In no span of 3s, aggregated over all queries, can user with uid = 1 produce output that uses more than half the total tuples in d_patients.

P6 In any span of 300ms, user with uid = 1 should not use the same input tuple from d_patients more than 1000 times.

Table 2: The policies used in the experiments. P1 uses the cheapest log-generating function (Users). Note, group ‘X’

contains user 1 but not user 0. P2 uses both Users and Schema log-generation functions. The remaining policies are the

most expensive policies and use the Provenance log-generating function.

Time Query

W1 0.25ms SELECT * FROM d_patients WHERE subject_id = 186

W2 15.69ms SELECT c.subject_id, p.sex, COUNT(c.subject_id) FROM chartevents c, d_patients p WHERE c.subject_id = 489 AND
p.subject_id = c.subject_id AND itemid = 211 GROUP BY c.subject_id, p.sex HAVING COUNT(c.subject_id) > 1

W3 170.43ms SELECT c.subject_id, p.sex, COUNT(c.subject_id) FROM chartevents c, d_patients p WHERE c.subject_id < 1000
AND c.subject_id > 930 AND p.subject_id = c.subject_id AND itemid = 211 GROUP BY c.subject_id, p.sex HAVING
COUNT(c.subject_id) > 23

W4 1756.6ms SELECT c.subject_id, p.sex, COUNT(c.subject_id) FROM chartevents c, d_patients p WHERE c.subject_id < 1450
AND c.subject_id > 800 AND p.subject_id = c.subject_id AND itemid = 211 GROUP BY c.subject_id, p.sex HAVING
COUNT(c.subject_id) > 1000

Table 3: Queries used in experiments. Queries selected to cover a wide range of runtimes.

(a) (b) (c)

Figure 2: Policy and query evaluation time (in ms) for DataLawyer and NoOpt for all policies. Figures 2a and 2b

show times for query W4 for users with uid=0 and uid=1, respectively; Figure 2c shows times for query W2 for uid=1.

The topmost bar is the query’s evaluation time on an unmodified PostgreSQL (warm cache). DataLawyer’s numbers

were measured over a warm cache, once the overhead stabilizes. For NoOpt, we show the time for the first query (cold

cache) and for the 10th query (warm) for the first two figures, and the 400th query (warm) for the last one. Error bars

show the standard deviation over 12 runs for NoOpt and 50 runs (or more) for DataLawyer.

cheap policies, the overhead becomes visible. But, the policy
checking overhead remains low (below 50 ms), maintaining
the interactive speeds of these short queries.

Overheads become significant for the more expensive poli-
cies P3 through P6, which all use the Provenance log-
generating function. As seen in Figure 1, the overhead with
NoOpt grows quickly. For example, the total time taken to
check and execute queries for policy P3 increases by 1.8⇥ and
1.9⇥ for Figures 2a and 2b, respectively, between the first
and the tenth query while increasing by 8.8⇥ for Figure 2c
between the 1st and the 400th. In contrast, DataLawyer
maintains a significantly lower and constant overhead.

for NoOpt, but that is because the first query was over a cold cache.
In the long run, this advantage vanishes.

These overheads have two components: the overhead of
tracking usage and the overhead of evaluating the policies.
For NoOpt, the overhead of the former is solely dependent
on the usage logs mentioned in the policy definition. For
a given query, the overhead is thus approximately constant
across policies that use the same logs (e.g., P3 through P6).
For DataLawyer, the overhead of tracking usage is split into
tracking the usage and compacting the log. Here, interleaved
query evaluation and preemptive log compaction (§4.3) en-
able DataLawyer to avoid generating any usage logs in some
cases such as for user 0 on query W4 in Figure 2a. In other
cases, DataLawyer generates the logs and stores them in
temporary tables in memory. Unlike NoOpt, DataLawyer
compacts these tables before writing anything to disk, which
is why the overhead of tracking usage is smaller for Data-

Lawyer than for NoOpt even when both use the same logs,
especially apparent for query W2. Log compaction can add a
significant overhead, which nevertheless pays o↵ within the
first 10 to 400 queries in this experiment. Log compaction’s
overhead is a function of existing log size, log increment size,
and policy complexity. Hence, for policies P1 and P2 that
rely on small usage logs, the overhead is tiny, while for poli-
cies P5 and P6, that rely on all three logs and require mul-
tiple joins and aggregations, the overheads are noticeable.
Interestingly, in multi-threaded systems, one can return the
result of the query to the user before log compaction finishes,
thus the e↵ective latency seen by the user may, in some cases
such as for W2 (policies P5 and P6), be as little as 23% of
the time reported by a single-threaded system.

The overhead for evaluating policies is what dominates the
overhead for NoOpt in later stages, while it stays constant
and small for DataLawyer. Log compaction helps to keep the
policy evaluation time small and constant for DataLawyer
as illustrated in Figure 2b. Additionally, when applicable, as
it does in case of user 0, interleaved evaluation allows Data-
Lawyer to evaluate policies with practically no overhead; in
our experiments, the maximum overhead over all policies
and queries for user 0 was 3ms whereas the corresponding
overhead for user 1 was 540ms.

In spite of all its optimizations, for expensive queries,
such as W4, and for the most expensive class of policies,
DataLawyer imposes a relative overhead up to 2⇥ to 3⇥
for uid=1. In general, for the latter user, a 100% overhead
is unavoidable for policies P3 through P6, since they need
the provenance, which is usually more expensive to generate
than evaluating the query.

5.2 Log Compaction Optimization
As the end-to-end results show, log compaction (§4.1.2) is

crucial for DataLawyer to maintain a constant overhead as
more queries are executed against the database.

Log compaction removes dispensable tuples from the us-
age log and this reduces the time spent in policy evaluation
for policies that are not time-independent. Note that both
DataLawyer and NoOpt keep the newly generated usage log
increments in memory, only pushing them to disk after ver-
ifying all policies. Thus, log compaction may also reduce
the tuples from the latest log increment that are appended
to the usage log, after checking each valid query. Here, we
measure three phases of log compaction: (a) marking: the
log compaction queries are executed over the disk-resident
log and its in-memory increment, to determine which tuples
to retain, and they are marked, (b) delete: the unmarked
tuples are deleted, and (c) insert: the remaining tuples in
the increment are appended to the log on disk.
To determine which tuples need to be removed Data-

Lawyer must execute possibly multiple log compaction
queries. Therefore, unless enough tuples are pruned this
can be a significant overhead. Figure 3 shows the overhead
of this optimization for three of the six policies: policies 1,
5, and 6 for the four queries by user with uid=1. No log
pruning is needed for time-independent policies 2, 3, and 4
and hence they are not shown in the graph.
We explain what DataLawyer prunes for each policy: for

P1, the algorithm only retains the latest timestamp of the
latest query, and only by the users in the group ‘X’; for P5, it
only retains log entries for user 1’s queries over d_patients
in the window specified and only retains the latest instance

Figure 3: Overheads of Log Compaction: Time taken in

the three phases of log compaction. Mark identifies the

tuples to discard; Delete removes them; Insert appends

the new tuples that were not marked for deletion. A

configuration such as P6.W3 is interpreted as query W3

tested for policy 6. The percentages in parenthesis is the

fraction of time spent in log compaction compared to the

total policy checking and query evaluation time.

Count P2 P2 - No ti P3 P3 - No ti P4 P4 - No ti

1 205 222 491 924 653 1355
5 198 208 473 881 643 2732

10 202 211 471 900 685 5110
15 212 229 480 949 648 8046
20 199 210 475 894 655 11809

Table 4: Policy and query evaluation time (in ms) for

DataLawyer after executing multiple counts of query W3

with time-independent policies 2, 3, and 4. Runtimes are

reported with and without (represented as “No ti”) the

time-independent optimization. In both cases, all other

optimizations are enabled.

of the tuples accessed by the user; and for P6, it prunes out
the tuples outside the sliding window.

For policies 1, 5, and 6, and for all queries, the bulk of the
overhead of compacting the usage log is the “marking” stage
where the tuples to be retained are selected. The high over-
head is because 3 passes are made over the usage logs: the
first to unmark all tuples, the next to compute the log com-
paction query which generates a set of tuple ids to retain,
and the third pass to mark these tuples for retention. In con-
trast, NoOpt’s overhead, apart from computing the usage
logs, is about the same as the “insert” phase (since NoOpt
does not prune any tuples, it may take slightly longer). In-
terestingly, as Figure 2 shows, in spite of such high overhead
for pruning the log, the optimization pays o↵ rapidly.

In our experiments, DataLawyer prunes the log after each
new query. Such eager pruning, however, is not necessary.
Instead, DataLawyer could compact the log less frequently
or whenever the system has idle resources to further reduce
the policy checking overhead.

5.3 Time-Independent Policies Optimization
We now test the impact of the time-independent opti-

mization (§4.1.1) in the presence of the other optimizations.
Recall that for this optimization, DataLawyer automatically
adds extra constraints on the ts attribute, to enable log com-
paction to later prune the entire log. In fact, in our imple-
mentation, DataLawyer flags time-independent policies and
never stores the log on disk in the first place thus completely
avoiding any log-compaction-related checks and deletes.

Policies 2, 3, and 4 are time independent. Table 4 shows
the time taken by DataLawyer to evaluate these policies on
query W3, once with this optimization on, and once without.

0"

1000"

2000"

3000"

4000"

5000"

6000"

P1" P2" P3" P4" P5" P6"

Po
lic
y'
ch
ec
ki
ng
'&
'q
ue

ry
'

ex
ec
'(i
n'
m
s)
'

Policy'

Query"
uid=0"
uid=0:"no"int"
uid=1"
uid=1:"no"int"

Figure 4: Policy and query evaluation time (in msecs)

for each policy and query W4. We consider two users,

uid=0 and uid=1, and for two versions of DataLawyer, one

with all the optimizations and one with all optimizations

but interleaved execution (indicated by “no int”).

The primary benefit of the time-independent optimization
over basic log compaction, is that this optimization allows
DataLawyer to prune the log even for policies that involve
aggregates but have no sliding time windows. For example,
for policies 3 and 4, log compaction on the original policies
without the added predicates on time does not prune any
tuples. As a result, the overhead for both policies grows
over time. The log compaction algorithm can not reason
over aggregates and instead, we compact the corresponding
full query, which ends up selecting all tuples for retention.
In contrast, identifying the policies as time-independent per-
mits the system to discard these tuples.

A secondary benefit is that, although the optimization
can not avoid generating the logs, it avoids running the log
compaction tests or appending any tuples to the disk.

Overall, in our experiments, this optimization halved the
policy evaluation and query time for policies 3 and 4. Not
much di↵erence is seen in the case of policy 2 since it is a
much cheaper policy to check and it produces a tiny log.

Thus, to ensure high performance, both optimizations,
time-independence and log compaction prove beneficial.

5.4 Interleaved Policy Evaluation
We now evaluate the benefit of interleaved policy evalua-

tion (§4.2.1). We quantify both the benefit when the opti-
mization leads to early pruning as well the extra overhead
when it does not. The overhead is due to executing multi-
ple queries, each an approximation of the policy, instead of
directly executing the original policy.

We evaluate each policy in isolation, for each query, once
for user 0 and then for user 1. By design, interleaved exe-
cution prunes the policy after generating the cheapest log,
Users, for user 0; and this provides an upper bound on its
benefits. For the other user, interleaved execution only leads
to an overhead with no pruning. For comparison, we provide
the runtime with this optimization turned o↵.

Figure 4 shows that for user 0, interleaved policy evalua-
tion can cut the runtime by more than half compared with
not using the optimization. The resulting policy checking
overhead drops to within 2.5% of the query evaluation time
and remains nearly constant across all policies.

In user 1 though, interleaved execution does not lead to
early pruning. DataLawyer without interleaved performs
better than with interleaved. However, the di↵erences are
small. For the query shown, the maximum di↵erence was
of 1.7% of the runtime without interleaved. Even for the
other queries (not shown), the di↵erences are small, both in
absolute as well as relative terms.

Another benefit of interleaved optimization is that in the

1"

10"

100"

1000"

10000"

10" 100" 1000"

Po
lic
y'
ev
al
ua

,o
n'
,m

e'
(in

'm
s)
'

Number'of'policies'

Query" Unified;"Serial"
Unified;"Interleaved" Not"unified;"Union"
Not"unified;"Serial" Not"unified;"Interleaved"

Figure 5: Policy Unification: A comparison of the aver-

age time to verify the policies (using either union, serial,

or interleaved policy evaluation) and execute the query

as we scale up the number of policies that can be unified

to a single policy.

presence of multiple policies, as opposed to a single policy
as in this experiment, the benefits are additive, while the
overheads are sub-additive. The benefits add up since the
time saved by early pruning for each policy is independent
of whether another policy is pruned or not, whereas the
overheads are sub-additive since the log generation, which
can be expensive as for policies 3, 4, 5, and 6 for Provenance,
is done once and the output is shared across the policies.

5.5 Policy Unification Optimization
We now answer how the time to evaluate policies change

as we increase the number of policies, where policies are
identical except for their parameters.

In this experiment, we check policy P1 for query W1. We
vary the number of policies by two orders of magnitude by
running three experiments: (a) 10 users each running 1000
queries (and a policy like P1 for each user), (b) 100 users and
100 queries each (and a policy like P1 for each user), and (c)
1000 users running one query each (and a policy like P1 for
each user). All queries execute in a round robin fashion. In
this setting, the total number of queries executed remains
constant but the number of users and thus the number of
policies grows from 10 to 1000.

For the case when the policies are not unified, we com-
pare three policy evaluation strategies : 1) union: Union
all the (boolean) policies and execute one large policy, 2)
serial: Execute policies one at a time, and 3) interleaved:
Use interleaved execution (§4.2.1). For the case of the sin-
gle unified policy, we compare serial (serial and union are
identical with one policy) to interleaved.

Figure 5 shows that irrespective of the strategy, with-
out unification, policy checking time grows linearly with the
number of policies. The union is the most e�cient because
it avoids the overhead of multiple JDBC calls (serial takes
from 23% to 87% more time to check the same policies);
while interleaved is costlier (up to 16% for 1000 users) than
serial since interleaved makes 2⇥ more JDBC calls that se-
rial for the specific policy used in this experiment.

On the other hand, unification of policies to a single one
leads to a constant time to evaluate all the policies even
after scaling up by two orders of magnitude. And this is
independent of the policy evaluation algorithm used. This
is because the unified policy introduces a relatively small
dataset (with a maximum of 1000 rows in our experiments)
to join with and that easily fits in memory.

Figure 5 validates the intuition that policy evaluation
should be O(n), where n is the number of policies; while

unification should lead to policies that are slightly more ex-
pensive to compute than an individual policy before uni-
fication, but that run in constant time irrespective of the
number of merged policies.

6. DISCUSSION
DataLawyer’s approach enables the expression of a wide

variety of policies, but there are limitations to what can be
expressed. We identify two limitations: First, boolean poli-
cies only allow accept/reject semantics. As a result, Data-
Lawyer cannot support policies that require other semantics,
such as for example creating a log entry when a violation oc-
curs. Second, DataLawyer does not support policies defined
over the actions of DataLawyer itself. Were that allowed,
we could define a policy preventing DataLawyer from re-
jecting two successive queries from the same user leading to
unenforceable sets of policies.

Another limitation of DataLawyer is that it cannot en-
force all expressible policies e�ciently. Currently, we only
have full support for policies with monotone aggregate con-
ditions (e.g.having count([distinct] x) > k, see §4.2.1),
and only limited support for non-monotonic aggregates. Ad-
ditionally, some policies are“hard”because they require stor-
ing a significant amount of history. An interesting area of
future work is to use approximate policies to improve per-
formance: The system first runs a simpler test that quickly
validates most queries, but occasionally flags a valid query
as suspicious and spends extra time to do the precise check.

A benefit of DataLawyer’s approach is its potential ex-
tensibility to new domains by defining one or more new
log-generating functions. These functions can be arbitrary
pieces of code. We give two examples. First, consider a
policy that restricts queries from ‘mobile’ devices to output
sizes of 10 tuples. To enable such a policy in DataLawyer
one has to write a new log-generating function that parses
the database connection string or the user-agent headers and
populates a new table in the usage log with device informa-
tion; the policy itself is a simple SQL query over the new
usage log. As another example, consider a tweak on policy
P4 from Table 1 to make it sensitive to the server load: “no
user should be able to issue more than 50 requests per hour
when the system load exceeds 80%.” To implement such
a policy one must, (a) define a log-generating function to
populate the usage log with the current system load, and
(b) write the corresponding SQL query.

Two important future research problems are both related
to usability. The first is to help users debug queries that
are deemed non-compliant. The other is to reduce the e↵ort
of translating text policies to our framework. Our survey
indicated that there is a lot more structure to these policies
and it may be possible to come up with templates (domain
specific, if required) that can be later tweaked to get the set
of policies for an organization. Policy generation by example
might be another useful direction for future work.

Finally, we note that, while DataLawyer is an important
step toward automatic enforcement of data use policies, it
does not obviate the need for signed agreements and lawyers,
because it does not control what happens to the data once
it leaves the system.

7. RELATED WORK
Data auditing. Most auditing systems [41, 26, 40, 42, 34]

detect data misuses, but only after the fact. In the online
case, some prior techniques such as those that rely on re-
ordering of queries [41] are not applicable; other techniques
are data instance independent [42] and only make use of the
structure of the queries themselves, unlike our semantics,
which are data dependent.
Privacy Mechanisms. DataLawyer’s goal is not to protect
privacy, its goal is to verify that queries follow a pre-defined
set of usage policies.
Access control. Access control approaches [26, 36] do not
handle the case when users are allowed to see individual
data items but do not have permission to perform certain
operations, such as joins, on these data items.
Usage Models. The UCON

ABC

model [43], is a generic
framework that models 16 usage control scenarios (such as
UNIX access control lists and Digital Rights Management).
DataLawyer subsumes six of those, the additional complex-
ity is due to the expressiveness of the relational model.

DBAs may also automatically enforce performance related
policies using Teradata’a Active Management System [16],
but they do not have support for general data usage policies.
Complex Event Processing (CEP). Theoretically, some
policies may be encoded as patterns for a CEP engine [33,
29, 47, 22] that can then search them in a stream of log in-
crements as new queries arrive. Unlike CEP engines though,
DataLawyer controls if and when to generate the log stream,
which our experiments show to be a critical optimization.
CEPs usually use non-deterministic finite automata to repre-
sent patterns. DataLawyer’s policies are more general since
arbitrary code is permitted for log-generating functions.
Multi-Query Optimization (MQO). Many tech-
niques [27, 39, 28] for MQO identify common sub-
expressions in the query and then store the intermediate
results to be reused by multiple queries. SharedDB [37] also
provides a complementary set of techniques to ours. Al-
though, DataLawyer can use these techniques, its primary
performance improvements come from exploiting the fact
that the policies are boolean. Further, in our setting, we
also need to worry about regular and frequent updates to
the underlying data (usage logs) that also provide opportu-
nities for significant performance improvements.
Triggers. Triggers [23, 24] are only executed for DML state-
ments and not for non-DML statements unlike the policies
discussed in this paper.
Provenance Management. Provenance and annota-
tion management [30, 31] store how data moves through
databases over its life cycle. Their algorithms focus on re-
ducing the provenance storage overhead and its querying.
These techniques are orthogonal to our system, for which,
provenance is just one possible log generating function.
User Interface. The interface that displays the message
to the user and recommends alternative actions was demon-
strated in an early prototype of our system [3].

8. CONCLUSION
We developed DataLawyer, a middleware system to spec-

ify and enforce data use policies on relational databases.
Our approach includes a SQL-based formalism to precisely
define policies and novel algorithms to automatically and ef-
ficiently evaluate them. Experiments on a real dataset from
the health-care domain demonstrate overhead reductions of
up to 330⇥ compared to a direct implementation of such a
system on existing databases.

9. REFERENCES
[1] Amazon Kindle.

https://kdp.amazon.com/help?topicId=A2JGI9S4FDM39Q.
[2] Anonymized.
[3] Anonymized.
[4] DataMarket. https://datamarket.com.
[5] DataSift. http://datasift.com/terms/.
[6] Digital Folio.

http://www.digitalfolio.com/Home/TermsOfService.
[7] Factual. www.factual.com.
[8] Foursquare terms of use.

https://foursquare.com/legal/api/platformpolicy.
[9] Infochimps Data Marketplace.

www.infochimps.com/Marketplace.
[10] Microsoft Translator. http://datamarket.azure.com/

dataset/bing/microsofttranslator.
[11] MIMIC II. http://physionet.org/mimic2.
[12] Navteq. www.navigation.com.
[13] Rate data.gov.uk. http://www.nationalarchives.gov.uk/

doc/open-government-licence/.
[14] Rate Limiting.

https://dev.twitter.com/docs/rate-limiting/1.
[15] Socrata. http://www.socrata.com/.
[16] Teradata Active System Management.

http://www.teradata.com/article.aspx?id=1602.
[17] Windows Azure Marketplace.

http://datamarket.azure.com/.
[18] World Bank.

https://openknowledge.worldbank.org/terms-of-use.
[19] Xignite. www.xignite.com.
[20] Yelp Display Requirements. http://www.yelp.com/

developers/getting_started/display_requirements.
[21] DataLawyer Source Code. https://www.dropbox.com/sh/

t0k3ajef57o8cjr/AACdfiZnPIqd_1nzsFdyOV_6a, 2013.
[22] Oracle Event Processing Language Reference.

http://docs.oracle.com/cd/E14571_01/apirefs.1111/
e14304/overview.htm#i1024819, 2013.

[23] Oracle: Fine Grained Auditing. http://www.oracle.com/
technetwork/database/security/index-083815.html,
2013.

[24] PostgreSQL: Audit Triggers.
http://wiki.postgresql.org/wiki/Audit_trigger, 2013.

[25] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[26] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In VLDB, pages 143–154, 2002.

[27] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Materialized view and index selection tool for microsoft sql
server 2000. In SIGMOD Conference, page 608, 2001.

[28] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
Dbtoaster: Higher-order delta processing for dynamic,
frequently fresh views. PVLDB, 5(10):968–979, 2012.

[29] A. P. Buchmann and B. Koldehofe. Complex event
processing. it - Information Technology, 51(5):241–242,

2009.
[30] P. Buneman, A. P. Chapman, and J. Cheney. Provenance

management in curated databases. In In SIGMOD âĂŹ06:
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 539–550. ACM,
2006.

[31] P. Buneman, J. Cheney, W. C. Tan, and S. Vansummeren.
Curated databases. In PODS, pages 1–12, 2008.

[32] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In STOC,
pages 77–90, 1977.

[33] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A general purpose
event monitoring system. In CIDR, pages 412–422, 2007.

[34] D. Fabbri, K. LeFevre, and Q. Zhu. Policyreplay:
Misconfiguration-response queries for data breach
reporting. PVLDB, 3(1):36–47, 2010.

[35] W. Fan, F. Geerts, and L. Libkin. On scale independence
for querying big data. In PODS, pages 51–62, 2014.

[36] E. Ferrari. Access Control in Data Management Systems.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2010.

[37] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb:
Killing one thousand queries with one stone. Proc. VLDB
Endow., 5(6):526–537, Feb. 2012.

[38] B. Glavic and G. Alonso. Perm: Processing provenance and
data on the same data model through query rewriting. In
ICDE, pages 174–185, 2009.

[39] H. Gupta and I. S. Mumick. Selection of views to
materialize under a maintenance cost constraint. In ICDT,
pages 453–470, 1999.

[40] R. Hasan and M. Winslett. E�cient audit-based
compliance for relational data retention. In Proceedings of
the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, pages 238–248,
New York, NY, USA, 2011. ACM.

[41] R. Kaushik and R. Ramamurthy. E�cient auditing for
complex sql queries. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 697–708, New York, NY, USA,
2011. ACM.

[42] R. Motwani, S. U. Nabar, and D. Thomas. Auditing sql
queries. In ICDE, pages 287–296, 2008.

[43] J. Park and R. Sandhu. The uconabc usage control model.
ACM Trans. Inf. Syst. Secur., 7(1):128–174, Feb. 2004.

[44] F. Schomm, F. Stahl, and G. Vossen. Marketplaces for data:
An initial survey. SIGMOD Rec., 42(1):15–26, May 2013.

[45] V. Tannen. Provenance for database transformations. In
EDBT, page 1, 2010.

[46] R. Y. Wang and D. M. Strong. Beyond accuracy: What
data quality means to data consumers. J. Manage. Inf.
Syst., 12(4):5–33, Mar. 1996.

[47] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD Conference,
pages 407–418, 2006.

https://kdp.amazon.com/help?topicId=A2JGI9S4FDM39Q
https://datamarket.com
http://datasift.com/terms/
http://www.digitalfolio.com/Home/TermsOfService
www.factual.com
https://foursquare.com/legal/api/platformpolicy
www.infochimps.com/Marketplace
http://datamarket.azure.com/dataset/bing/microsofttranslator
http://datamarket.azure.com/dataset/bing/microsofttranslator
http://physionet.org/mimic2
www.navigation.com.
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
https://dev.twitter.com/docs/rate-limiting/1
http://www.socrata.com/
http://www.teradata.com/article.aspx?id=1602
http://datamarket.azure.com/
www.xignite.com
http://www.yelp.com/developers/getting_started/display_requirements
http://www.yelp.com/developers/getting_started/display_requirements
https://www.dropbox.com/sh/t0k3ajef57o8cjr/AACdfiZnPIqd_1nzsFdyOV_6a
https://www.dropbox.com/sh/t0k3ajef57o8cjr/AACdfiZnPIqd_1nzsFdyOV_6a
http://docs.oracle.com/cd/E14571_01/apirefs.1111/e14304/overview.htm#i1024819
http://docs.oracle.com/cd/E14571_01/apirefs.1111/e14304/overview.htm#i1024819
http://www.oracle.com/technetwork/database/security/index-083815.html
http://www.oracle.com/technetwork/database/security/index-083815.html
http://wiki.postgresql.org/wiki/Audit_trigger

	1 Introduction
	2 Motivation
	3 Policies
	3.1 Policy Specification
	3.2 Usage Log
	3.3 Semantics

	4 The DataLawyer System
	4.1 Data Minimization
	4.1.1 Time-Independent Policies
	4.1.2 Log Compaction

	4.2 Policy Minimization
	4.2.1 Interleaved Policy Evaluation
	4.2.2 Policy Unification

	4.3 Advanced Optimizations
	4.4 Putting It All Together

	5 Evaluation
	5.1 Overhead of DataLawyer with All Optimizations Enabled
	5.2 Log Compaction Optimization
	5.3 Time-Independent Policies Optimization
	5.4 Interleaved Policy Evaluation
	5.5 Policy Unification Optimization

	6 Discussion
	7 Related Work
	8 Conclusion
	9 References

