
A Discussion on Pricing Relational Data

Magdalena Balazinska, Bill Howe, Paraschos Koutris,
Dan Suciu, and Prasang Upadhyaya

University of Washington,
Seattle, USA

Abstract. There exists a growing market for structured data on the
Internet today, and this motivates a theoretical study of how relational
data should be priced. We advocate for a framework where the seller
defines a pricing scheme, by essentially stipulating the price of some
queries, and the buyer is allowed to purchase data expressed by any
query they wish: the system will derive the price automatically from
the pricing scheme. We show that, in order to understand pricing, one
needs to understand determinacy first. We also discuss some other open
problems in pricing relational data.

Keywords: relational databases, pricing

1 Introduction

In the summer of 2007, Peter Buneman posed the following question to one of the
authors of this article. How should one set a price for data on the Internet? A lot
of data is freely available today, but for some data the production costs are quite
high, and it makes sense to charge for its usage in order to recover the production
costs. Peter’s original motivation came from the IUPHAR database [1], a repos-
itory of receptor nomenclature and drug classifications contributed by a large
community of experts in the field. Observing that this data is extremely valuable
to pharmaceutical companies, Peter reasoned that one could recover some of the
costs of producing and maintaining the data by charging these pharmaceutical
companies a price for accessing it. Some technical developments resulting from
those initial discussions with Peter are available in a separate manuscript [9].

Today, Peter’s question applies to a large number of datasets, both from the
scientific and commercial domains; increasingly, one finds data for sale on the
Internet. In fact, in recent years, one has witnessed the emergence of market-
place services for data, which are Websites whose purpose is to facilitate buying
and selling data. Examples of such data marketplaces are the Windows Azure
Marketplace [2], a data marketplace that contains over 100 data sources for sale,
Infochimps [3], which contains about 15,000 data sets for sale, and Xignite [5],
which sells financial data.

The database group at the University of Washington has started a research
project on data markets. Funded by a partnership between NSF and Microsoft,
the project plans to investigate several aspects of data markets, ranging from

systems issues arising from monitoring data usage for billing purposes, to under-
standing the principles of the interaction between data and prices [4,8]. In this
paper, we outline our initial investigation into the latter: how to mix data and
prices in a principled way. Our thinking was, in part, informed by those early
discussions with Peter in 2007.

2 Of Versions and Views

On the surface, buying and selling data is not much different from buying and
selling any other products. An agent produces the data and incurs some cost in
doing so; the data has some value to a buyer; the seller and buyer agree on a price.
This is a problem studied extensively by economists over centuries. However, as
explained by Shapiro and Varian [16], digital goods, of which data sets are one
instance, have unique characteristics that cause traditional pricing mechanisms
to fail: they have a high and irrecoverable fixed cost (producing the data is
expensive) and a very low variable cost (copying the data is almost free). The
fixed and irrecoverable cost of data is quite distinct from that of physical goods.
Shapiro and Varian illustrate this with a large airplane manufacturing company
investing in a new factory: if the business plan turns sour, the company can still
recover some of its investment by reselling the building and the manufacturing
machinery. In contrast, if a company invests in acquiring detailed satellite data,
and is undercut by a competitor selling similar data at a much lower price, it
cannot recover anything from its now worthless satellite data. The low cost of
copying digital goods further exacerbate the problem, allowing competitors to
churn out copies in unrestricted quantities. The sharp skew towards fixed costs
makes traditional cost-based pricing models inapplicable. This can lead either
to fortunes for the producer (if she has no competition), or to total ruin.

Shapiro and Varian [16] argue that pricing on the Internet should be based on
the value that a customer places on the information. They argue that versioning
digital products is the solution to pricing digital goods. Even pricing traditional
information products included some form of versioning. In the case of movies,
the “new-release” version costs $12/person to watch, but renting the “DVD”
version that comes out six month later costs $3/family; the two versions target
two kinds of buyers, the must-see-it-now buyers willing to pay an extra price,
and the price-conscious buyers who can wait six months.

The analog to versions in data markets are views. A view over a data instance
is the same as a version of that instance. The view may contain only a subset
of the data, or only some columns, or may contain information at a coarser
granularity. All these can be seen as different versions of the digital product,
and sold at different prices.

Consider, for example, a dataset stored in a single relation R(x, y, z). The
seller could set two price levels: a price p1 for the entire dataset, and a price
p2 for an individual tuple. Presumably, the former price is much higher than
the latter, p1 � p2. As a concrete example, it is possible today to buy either
entire databases of curated business addresses [11] or to check the correctness

of individual addresses [13]. This corresponds to two versions, one for the power
customers, who need the entire dataset and are willing to pay a high price, and
a second version for the occasional customer interested in only one or just a few
records.

Dataset versions are commonly used today. For example, CustomLists.net [11]
sells a database of 28.6 million American businesses for $399. The price is only
$199 for a single state and it is only $299 for the subset of American businesses
that also have an email address. Such versions add significant flexibility, but
what if a user wants some other subset of the data such as only large businesses
with more than 1000 employees? Or businesses within 1 mile of a Home Depot?
Or businesses in cities that experience frequent flooding? Today, buyers must
either purchase supersets of the data they need or they must negotiate custom
data products. AggData [7] is an example data seller that provides such custom
solutions. Negotiating custom solutions, however, does not scale: If a human
must look at each custom view and must price that view, possibly negotiating
with the buyer, the total number of distinct views that can be priced is limited.

We envision a solution that allows the seller to assign a price to any possible
view that the buyer may be willing to buy. This requires a study of how database
views can be adorned with prices. We start with the following definition.

Definition 1. Let D be a database instance. A pricing scheme for D is a set of
view, price pairs: S = {(V1, p1), . . . , (Vk, pk)}.

The data seller decides to create k “versions” of her digital product, defined
by k views, and price each of them differently. The goal is to define some high-
value views (for example, the entire dataset) to be sold to a few high rollers, yet
define sufficiently many lower quality views that can be sold to a large number
of customers. From these k views, the goal is to automatically derive the price
of any other view V defined by the buyer. This is also the direction in which the
initial discussion with Peter was heading in 2007: set the prices of some subsets,
and infer automatically the prices of all other subsets [9].

An important problem that needs to be studied in pricing data is the choice
of the view language in which we express the views V1, . . . , Vk in Definition 1.
This is non-trivial: we discuss here three dimensions of this problem, leaving a
solution to future work.

Relational View Any selections or projections should be available to the seller
if she decides to set a price on that selection or projection. We argue that
joins are needed too. For example, suppose the seller wants to set a certain
price for the personal information of all CEO’s of companies with a revenue
> $10M : this requires a semijoin of the CEO relation with the Company
relation. In general, one can make the argument that the seller should be
allowed to use arbitrary relational views to define versions of the data.

Increasing/Decreasing Accuracy Decreasing the accuracy or adding noise
to the data can produce a version that is less valuable, and, hence, can be
sold at a lower price, to a larger number of buyers. For example, weather data

for standard, city-wide weather forecast is virtually free, but detailed precip-
itation information required by commercial farmers can only be purchased at
a cost. There is an interesting connection here to data privacy: private data
is sold today at a price, but properly anonymized data is free. The converse
is also true: by performing data cleaning, the seller may increase the value
of her data product. Views that add noise to the data should be available to
the seller to set prices.

User-defined Functions The seller may own a domain specific algorithm for
enhancing the data; by applying that function, the seller can produce new
data that is more valuable than the raw data. For example, the seller may
have a proprietary algorithm for image processing; by applying this function
to all images in a collection it may produce a more valuable data set. Another
example consists of a sophisticated data mining algorithm: the result of the
data mining is much more valuable that the raw data itself. The seller should
be able to define views with user-defined functions.

3 Arbitrage in Data Pricing

Consider a pricing scheme S given by Definition 1. Two problems may arise.
The first is consistency. One expects that every price point (Vi, pi) will make

sense. For example, it does not make sense to charge more for a single tuple than
for the entire dataset. In similar spirit, if the entire relation R costs p1 and a
single tuple in R costs p2, then it does not make sense to have |R| · p2 < p1, or,
else, no buyer will buy the entire dataset, but would instead buy one tuple at a
time. We say that a pricing scheme S = {(V1, p1), . . . , (Vk, pk)} is consistent if no
view Vi can be obtained at a price lower than pi by purchasing and combining
some of the other views in S. The consistency problem is this: Given a pricing
scheme S, check whether it is consistent.

The second problem is pricing a new view. Continuing the example where p1

is the price for the entire data set and p2 is the price for each individual record,
how much should a buyer pay if she wants to buy half of the data records ? On
one hand she could buy the entire dataset and pay p1, then retain only the half
she needs. On the other hand, she could purchase one record at a time, and pay
|R|·p2/2. Clearly, the buyer will choose whichever is cheaper. In general, the price
computation problem is this: given a pricing scheme S = {(V1, p1), . . . , (Vk, pk)}
and a new view V (not necessarily mentioned in S), determine the cheapest way
for a user to obtain V by purchasing views available in S.

Both problems are facets of arbitrage. Arbitrage occurs if the pricing scheme
sets a price p for a view V (possibly a new view not explicitly priced by the
seller), but a buyer has the option of answering V from V1, . . . , Vm such that
their combined price is less than p: not only can the buyer get away by paying
less than p, but she could even profit by reselling V at a price lower than p,
which is traditionally called arbitrage.

The key technical difficulty in studying arbitrage is determining when a buyer
can answer a view V using the information in other views, say V1, . . . Vm. Let us

write:

V1, . . . , Vm � V (1)

if V can be answered from the views V1, . . . , Vm. This is just a notation, not a
formal definition; the intuition is that a buyer who needs the view V would rather
purchase the views V1, . . . , Vm and compute V , if these m views are cheaper than
the price of V . We will discuss later how to define �. Assuming that � is given,
one can define both consistency and the price function.

Definition 2. A pricing scheme S = {(V1, p1), . . . , (Vk, pk)} is consistent if,
whenever Vi1 , Vi2 , . . . , Vik

� Vi, then pi ≤ pi1 +pi2 +. . .+pik
. Given a view V and

a pricing scheme S = {(V1, p1), . . . , (Vk, pk)}, let S � V indicate {V1, V2, . . . , Vk}�
V . Then the price function defined by S is

pS(V) = min
T⊆S,T�V

∑
(Vi,pi)∈T

pi

In other words, S is consistent if a buyer cannot obtain Vi by paying less
than pi. Moreover, the price of an arbitrary view V is obtained by choosing the
least expensive subset of S that can be used to answer V , where the price of
T ⊆ S is just the sum of the prices of the views it contains.

We can also formally express the property that a pricing function does not
allow arbitrage.

Definition 3. A pricing function p is arbitrage-free if, whenever V1, . . . , Vm �
V , then p(V) ≤

∑m
i=1 p(Vi).

Note that this definition does not assume any pricing scheme S; for exam-
ple, the constant pricing function that assigns the same price to every view is
arbitrage-free. Now assume that a pricing scheme S is given, and consider the
pricing function pS defined in Definition 2. We were able to prove two interest-
ing facts (assuming some natural properties for �). First, pS is arbitrage-free;
second, S is consistent iff for every price point (Vi, pi) is S, the following holds:
pS(Vi) = pi.

We end this section with a discussion on the key technical difficulty of pricing:
How should we define � in Equation 1? Database theoreticians have studied
query answering using views for almost two decades, starting with Levy [12],
and Abiteboul and Duschka [6]. More recently, Segoufin and Vianu [15] and
Nash, Segoufin, and Vianu [14] have revisited the notion of query answering
using information-content. Their formal definition of determinacy is equivalent
to the following: V1, . . . , Vm � V if there exists a function f such that, for any
database instance D, f(V1(D), . . . , Vm(D)) = V (D). Let us call this definition
of determinacy NSV. If one adopts NSV for pricing, then, given any pricing
scheme S, the equation from Definition 2 extends it uniquely to a global pricing
function pS . We argue, however, that NSV is not the right notion for defining pS ,
and therefore a different definition for � is needed in order to compute prices.
Specifically:

– NSV is insensitive to the data instance. That means that the pricing function
pS(V) depends only on the view V , and not on the database instance D. In
practice, the database instance is also a variable, and should be considered
as input to the pricing function. For example the seller may add more data
to her raw dataset; as a consequence, she wants her pricing function to in-
crease. The determinacy relation � should somehow depend on the database
instance too. Instance-based determinacy has been much less studied in the
literature; one such definition can be found in Calvanese et al. [10].

– Unfortunately, NSV is difficult to check: it is undecidable for unions of con-
junctive queries, and its decidability is open for conjunctive queries [14]. This
means that we do not have any practical means for computing the pricing
function pS(V).

– NSV deals incorrectly with user-defined functions. For example, consider a
view V (x, f(y, z)) = R(x, y, z) that applies a proprietary user-defined func-
tion f to the attributes y and z. Naturally, the seller would like to charge
more for V than for R, but R determines V , because, mathematically, one
can compute V from R. NSV does not capture the fact that f is a propri-
etary function, which cannot be applied by the user interested in computing
V from R.

– Noise and levels of accuracy are not captured by NSV either, because the
latter is, in essence, a deterministic definition. We are not aware of any
natural extension of the determinacy relation � that can deal with noise in
the data.

To summarize, in order to understand the price of data one must understand
the notion of determinacy first. There exists an elegant definition for the latter,
but that does not seem to be the right choice for setting prices.

4 Open Problems

Data markets motivate a new direction of research in database theory. While we
have discussed the determinacy relation as the first step of this research, it is by
far not the only one. Several other open problems exists, we briefly mention a
few here.

Pricing updates The interaction between updates and prices is interesting.
The seller expects its prices to increase once the data is updated (assuming
tuples are being inserted), which seems to impose additional requirements
on a pricing function. At a more practical level, one question is how to
charge the buyer for incremental updates: if he already purchased data from
the old version, he expects to pay a reduced price for the updates. Finally,
it is unclear how consistency or arbitrage are affected by updates: if S is
consistent, can it become inconsistent after an update?

Pricing integrated data The interraction between multiple vendors affects
the pricing function in interesting ways. For example, different vendors may

add value in different ways to same data: the first vendor provides raw im-
ages, the second runs a proprietary face recognition algorithm, and the third
integrates the extracted faces with a social network database, thus putting
names on pictures. Each vendor adds some value to the data, by integrating
it with her own dataset or her proprietary tools. It will be quite challenging
to define pricing functions in such complex scenarios.

Pricing competing data sources There are often multiple vendors for quite
similar data sources. For example, today one can buy data about businesses
from several vendors. There are subtle relationships between these sources:
some are more complete, others are more accurate, others are more up to
date, while others yet are more reliable. Another major challenge is to un-
derstand how prices are affected by competing data sources.

References

1. http://www.iuphar-db.org/.
2. https://datamarket.azure.com/.
3. http://www.infochimps.com/.
4. The Data Ecoytem project: Data management and pricing in the cloud. http:

//data-pricing.cs.washington.edu/.
5. http://www.xignite.com/.
6. Abiteboul, S., and Duschka, O. M. Complexity of answering queries using

materialized views. In PODS (1998), ACM Press, pp. 254–263.
7. http://www.aggdata.com/.
8. Balazinska, M., Howe, B., and Suciu, D. Data markets in the cloud: An

opportunity for the database community. Proc. of the VLDB Endowment 4, 12
(2011).

9. Buneman, P., and Suciu, D. Censoring and pricing data. Manuscript, July 2007.
10. Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y. Lossless

regular views. In PODS (2002), L. Popa, Ed., ACM, pp. 247–258.
11. http://www.customlists.net/.
12. Levy, A. Y., Mendelzon, A. O., Sagiv, Y., and Srivastava, D. Answering

queries using views. In PODS (1995), pp. 95–104.
13. https://datamarket.azure.com/dataset/59a168b8-6d66-4f85-b000-38abcad310a2.
14. Nash, A., Segoufin, L., and Vianu, V. Determinacy and rewriting of con-

junctive queries using views: A progress report. In ICDT (2007), T. Schwentick
and D. Suciu, Eds., vol. 4353 of Lecture Notes in Computer Science, Springer,
pp. 59–73.

15. Segoufin, L., and Vianu, V. Views and queries: determinacy and rewriting. In
PODS (2005), C. Li, Ed., ACM, pp. 49–60.

16. Shapiro, C., and Varian, H. R. Versioning: The smart way to sell information.
Harvard Business Review 76 (November-December 1998), 106–114.

http://www.iuphar-db.org/
https://datamarket.azure.com/
http://www.infochimps.com/
http://data-pricing.cs.washington.edu/
http://data-pricing.cs.washington.edu/
http://www.xignite.com/
http://www.aggdata.com/
http://www.customlists.net/
https://datamarket.azure.com/dataset/59a168b8-6d66-4f85-b000-38abcad310a2

	A Discussion on Pricing Relational Data

